天才基本法_分卷阅读306 首页

字体:      护眼 关灯

上一章 目录 下一页

   分卷阅读306 (第1/2页)

    ,还要推翻自己的论证,并且要在此之上有全新的发现。

就算她有草莓世界老林的全部研究结果,但也不能把东西直接抄下来交给老林。

究竟要怎么办,她必须在老林身边,试探世界规则、找到正确方法,和解题一样。

老林对于她跟着倒没什么意见,当天晚上,林朝夕就把自己的回家作业搬进老林书房。

不过,老林同志对她的专业素养表示了怀疑:“你图论看了几页?”

林朝夕直接起身,走到老林的书架上,抽出第一版的,说:“都看完了。”

“嚯,了不起。”老林同志给她点了个赞,“书后的习题呢?”

“只做了一半,有很多不懂的。”

“那爸爸给你讲讲?”

“不行,你忙你的,我有不会的自己学,等你空了你再教我。”林朝夕很干脆拒绝,抱着书坐到自己的小桌上。

如果打开百度百科搜索图论,第一句话大概是这样的

——众所周知,图论起源于一个非常经典的问题,柯尼斯堡(konigsberg)问题。

柯尼斯堡这个词当然不那么“众所周知”,但如果换成它的另一个译名——七桥问题。就变成很多学生在小学奥数中都接触过的内容了。

一般它出现在小学奥数书“小知识”栏目中,配图是被一条河分隔开的a、b两地,河上有c、d两座小岛,有7座桥梁把岛屿同陆地联系起来。

问题如下:一个人要如何从a、b、c、d中任一块出发,恰好通过每座桥一次,再回到出发点?

当时有很多人都尝试过,发现似乎没办法做到这点。但这就是数学,无论可能或者不可能,都需要确切的证明。

于是,图论诞生了。

1736年,欧拉向圣彼得堡科学院递交了的论文。将岛与河岸抽象为顶点,桥变成连接顶点的边,证明一次走完7桥且不重复这是不可能的。

在完成解答的同时,欧拉开创了数学的一个新的分支——图论与几何拓扑。

这就是数学,你永远不知道,在解决一个看似无意义的问题背后,会藏着有怎样的未来。

林朝夕又翻完一章的内容,心中感慨。

其实她深知,她在这个领域更深入的地方,帮不上什么忙。但对她来说,她的命运好像不由自主地与这个问题纠缠在一起。

多了解一点,深入地了解一点,或许能在某一个时刻,对老林有所帮助。

书桌前的老林同志还在埋头,安静作着他自己的演算。

这天晚上的学习……

林朝夕并没对老林有什么帮助,不仅如此,老林同志还看了下她的习题本,抽空给她讲了个证明。

他们又聊了会儿七桥问题,老林说正好,他小学奥数班正好要上到这个内容,让她周末给小朋友们讲讲。

于是林朝夕莫名其妙开始想起了这节课要怎么上。

半夜的时候,林朝夕躺在床上,看着蚊帐。

黑暗中,她拼命让自己再想一遍当时老林证明中的问题和他取得新突
加入书签 我的书架

上一章 目录 下一页